УДК 519.51

K. D. PROTASOVA

PRETHICK SUBSETS AND PARTITIONS OF METRIC SPACES

K. D. Protasova. Prethick subsets and partitions of metric spaces, Mat. Stud. **38** (2012), 115–117.

A subset A of a metric space (X, d) is called thick if, for every r > 0, there is $a \in A$ such that $B_d(a, r) \subseteq A$, where $B_d(a, r) = \{x \in X : d(x, a) \leq r\}$. We show that if (X, d) is unbounded and has no asymptotically isolated balls then, for each r > 0, there exists a partition $X = X_1 \cup X_2$ such that $B_d(X_1, r)$ and $B_d(X_2, r)$ are not thick.

К. Д. Протасова. Предтолстые подмножества и разбиения метрических пространств // Мат. Студії. – 2012. – Т.38, №2. – С.115–117.

Подмножество A метрического пространства (X, d) называется толстым, если для любого r > 0 существует элемент $a \in A$ такой, что $B_d(a, r) \subseteq A$, где $B_d(a, r) = \{x \in X : d(x, a) \leq r\}$. Доказано, что если (X, d) неограниченно и не имеет асимптотически изолированных шаров, то для любого r > 0 существует разбиение $X = X_1 \cup X_2$ такое, что подмножества $B_d(X_1, r)$ и $B_d(X_2, r)$ не являются толстыми.

Given a metric space (X, d) and $x \in X$, $A \subseteq X$, $r \in \mathbb{R}^+$, $\mathbb{R}^+ = \{r \in \mathbb{R} : r > 0\}$ let

$$B(x,r) = \{y \in X \colon d(x,y) \le r\}, \ B(A,r) = \bigcup_{a \in A} B(a,r).$$

A subset A of X is called

- large if X = B(A, r) for some $r \in \mathbb{R}^+$;
- small if $L \setminus A$ is large for each large subset L;
- thick if, for each $r \in \mathbb{R}^+$, there is $a \in A$ such that $B(a, r) \subseteq A$;
- r-prethick if B(A, r) is thick;
- prethick if A is r-prethick for some $r \in \mathbb{R}^+$.

We note that A is small if and only if A is not prethick, A is thick if and only if $X \setminus A$ is not large. If X is bounded (i.e., X = B(x, r) for some $x \in X$ and $r \in \mathbb{R}^+$), each nonempty subset of X is large and prethick, if A is thick then A = X.

In what follows, all metric spaces are supposed to be unbounded.

By [2, Theorem 11.2], the family of all small subsets of X is an ideal in the Boolean algebra of all subsets of X. It follows that if X is finitely partitioned $X = X_1 \cup ... \cup X_n$ then at least one of the cells X_i is prethick.

In this note, we give a complete answer to the following question: Given a metric X and $n \in \mathbb{N}$, does there exist r = r(X, n), $r \in \mathbb{R}^+$ such that, for each n-partition of X, at least

2010 Mathematics Subject Classification: 05D05, 20A05.

Keywords: metric space, thick and prethick subsets, asymptotically isolated balls.

one of the partition cells is r-prethick? An analogous problem in the realm of G-spaces and groups was considered in [1].

We use the following definition from [2]. For r > 0, a metric space X has isolated r-balls if, for each t > r, there is $x \in X$ such that $B(x,t) \setminus B(x,r) = \emptyset$. If X has asymptotically isolated r-balls for some r > 0, we say that X has asymptotically isolated balls.

A partition $X = X_1 \cup \cdots \cup X_n$ is called *r*-meager, if each cell X_i is not *r*-prethick.

Theorem 1. For a metric space X, the following statements hold:

- (i) if X has asymptotically isolated r-balls, then for any n-partition $X = X_1 \cup \cdots \cup X_n$, at least one of the cells X_i is r-prethick;
- (ii) if X has no asymptotically isolated balls, then for each r > 0, there exists an r-meager 2-partition of X.

Proof. (i) We choose a sequence $(x_n)_{n\in\omega}$ in X and an increasing sequence $(k_n)_{n\in\omega}$ of positive integers such that $B(x_n, k_n) \setminus B(x_n, r) = \emptyset$. Then we pick a cell X_i of the partition containing infinitely many members of $(x_n)_{n\in\omega}$, and note that $B(X_i, r)$ is thick.

(ii) We take t > 2r such that $B(x,t) \setminus B(x,2r) \neq \emptyset$ for each $x \in X$. Using the Zorn lemma, we choose a subset $Y \subset X$ such that

(1) $B(y,t) \cap B(y',t) = \emptyset$ for all distinct $y, y' \in Y$;

(2) for each $x \in X$, there is $y \in Y$ such that $B(x,t) \cap B(y,t) \neq \emptyset$.

We put $X_1 = \bigcup_{y \in Y} B(y, r)$, $X_2 = X \setminus X_1$. By (1), (2) and the choice of t, the subsets $X \setminus B(X_1, r)$ and $X \setminus B(X_2, r)$ are large. Hence, X_1 and X_2 are not r-prethick. \Box

Remark 1. A metric space (X, d) is called *coarsely geodesic* if there are $\varepsilon > 0$ and a function $f: [0, \infty) \to \mathbb{N}$ such that any points $x, y \in X$ can be linked by a sequence of points $x = x_0, \ldots, x_n = y$ of length $n \leq f(d(x, y))$ such that $d(x_i, x_{i+1}) \leq \varepsilon$ for all i < n.

Each connected graph with the set of vertices V can be considered as a coarsely geodesic metric space (V, d), where d is the path metric on V. By [4, 5.1.1], each coarsely geodesic metric space is coarsely equivalent to some connected graph.

It is easy to see that a coarsely geodesic metric space (X, d) has no asymptotically isolated balls, but in the proof of (ii) the corresponding subsets X_1, X_2 can be chosen more constructively. We fix $x_0 \in X$, take an arbitrary s > r + t, t is chosen from the definition of a geodesic space, and put

$$X_1 = \bigcup_{s \in \omega} (B(x_0, 2s+1) \setminus B(x_0, 2s)), \ X_2 = X \setminus X_1.$$

Remark 2. We can generalize Theorem for balleans instead of metric spaces. Recall [4] that a ball structure B is a triple (X, P, B), where X, P are non-empty sets and, for every $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a subset of X which is called a ball of radius α around x. The set X is called the support of B, P is called the set of radii.

Given any $x \in X$, $A \subseteq X$, $\alpha \in P$, we put

$$B^*(x,\alpha) = \{y \in X \colon x \in B(y,\alpha)\}, \ B(A,\alpha) = \bigcup_{a \in A} B(a,\alpha).$$

A ball structure \mathcal{B} is called a *ballean* if

- $\forall \alpha, \beta \in P \exists \alpha', \beta' \in P \forall x \in X (B(x, \alpha) \subseteq B^*(x, \alpha') \text{ and } B^*(x, \beta) \subseteq B(x, \beta'));$
- $\forall \alpha, \beta \in P \exists \gamma \in P \forall x \in X (B(B(x, \alpha), \beta) \subseteq B(x, \gamma)).$

A ballean B is connected (bounded) if for any $x, y \in X$ there is $\alpha \in P$ such that $y \in B(x, \alpha)$ $(X = B(x, \alpha) \text{ for some } x \in X, \alpha \in P).$

We use a natural preordering α on P defined by $\alpha \prec \beta$ if $B(x, \alpha) \subseteq B(x, \beta)$ for every $x \in X$.

Each metric space (X, d) defines the ballean $(X, \mathbb{R}^+, B_\alpha)$. Clearly, all the definitions from this note can be literally rewritten for balleans instead of metric spaces. Moreover, the same can be done with the proof of Theorem 1 for all connected unbounded balleans.

REFERENCES

- 1. T. Banakh, I.V. Protasov, S. Slobodianiuk, Subamenable groups and their partitions, preprint (http://arxiv.org/abs/1210.5804).
- T. Banakh, I. Zarichnyi, The coarse characterization of homogeneous ultrametric space, Groups, Geometry and Dynamics, 5 (2011), 691–728.
- I. Protasov, T. Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser., V.11, VNTL Publisher, Lviv, 2003.
- I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser. V.12, VNTL Publisher, Lviv, 2007.

Department of Cybernetics, Kyiv University islab@unicyb.kiev.ua

Received 01.09.2012