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A subset A of a metric space (X, d) is called thick if, for every r > 0, there is a ∈ A such that
Bd(a, r) ⊆ A, where Bd(a, r) = {x ∈ X : d(x, a) ≤ r}. We show that if (X, d) is unbounded and
has no asymptotically isolated balls then, for each r > 0, there exists a partition X = X1 ∪X2

such that Bd(X1, r) and Bd(X2, r) are not thick.

К. Д. Протасова. Предтолстые подмножества и разбиения метрических пространств
// Мат. Студiї. – 2012. – Т.38, №2. – C.115–117.

Подмножество A метрического пространства (X, d) называется толстым, если для лю-
бого r > 0 существует элемент a ∈ A такой, что Bd(a, r) ⊆ A, где Bd(a, r) = {x ∈ X :
d(x, a) ≤ r}. Доказано, что если (X, d) неограниченно и не имеет асимптотически изо-
лированных шаров, то для любого r > 0 существует разбиение X = X1 ∪ X2 такое, что
подмножества Bd(X1, r) и Bd(X2, r) не являются толстыми.

Given a metric space (X, d) and x ∈ X, A ⊆ X, r ∈ R+, R+ = {r ∈ R : r > 0} let

B(x, r) = {y ∈ X : d(x, y) ≤ r}, B(A, r) =
⋃
a∈A

B(a, r).

A subset A of X is called

• large if X = B(A, r) for some r ∈ R+;
• small if L \ A is large for each large subset L;
• thick if, for each r ∈ R+, there is a ∈ A such that B(a, r) ⊆ A;
• r-prethick if B(A, r) is thick;
• prethick if A is r-prethick for some r ∈ R+.

We note that A is small if and only if A is not prethick, A is thick if and only if X \A is
not large. If X is bounded (i.e., X = B(x, r) for some x ∈ X and r ∈ R+), each nonempty
subset of X is large and prethick, if A is thick then A = X.

In what follows, all metric spaces are supposed to be unbounded.
By [2, Theorem 11.2], the family of all small subsets of X is an ideal in the Boolean

algebra of all subsets of X. It follows that if X is finitely partitioned X = X1 ∪ ...∪Xn then
at least one of the cells Xi is prethick.

In this note, we give a complete answer to the following question: Given a metric X and
n ∈ N, does there exist r = r(X,n), r ∈ R+ such that, for each n-partition of X, at least
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one of the partition cells is r-prethick? An analogous problem in the realm of G-spaces and
groups was considered in [1].

We use the following definition from [2]. For r > 0, a metric space X has isolated r-balls
if, for each t > r, there is x ∈ X such that B(x, t)\B(x, r) = ∅. If X has asymptotically
isolated r-balls for some r > 0, we say that X has asymptotically isolated balls.

A partition X = X1 ∪ · · · ∪Xn is called r-meager, if each cell Xi is not r-prethick.

Theorem 1. For a metric space X, the following statements hold:

(i) if X has asymptotically isolated r-balls, then for any n-partition X = X1 ∪ · · · ∪ Xn,
at least one of the cells Xi is r-prethick;

(ii) if X has no asymptotically isolated balls, then for each r > 0, there exists an r-meager
2-partition of X.

Proof. (i) We choose a sequence (xn)n∈ω in X and an increasing sequence (kn)n∈ω of positive
integers such that B(xn, kn)\B(xn, r) = ∅. Then we pick a cell Xi of the partition containing
infinitely many members of (xn)n∈ω, and note that B(Xi, r) is thick.

(ii) We take t > 2r such that B(x, t) \ B(x, 2r) 6= ∅ for each x ∈ X. Using the Zorn
lemma, we choose a subset Y ⊂ X such that

(1) B(y, t) ∩B(y′, t) = ∅ for all distinct y, y′ ∈ Y ;

(2) for each x ∈ X, there is y ∈ Y such that B(x, t) ∩B(y, t) 6= ∅.
We put X1 = ∪y∈YB(y, r), X2 = X \ X1. By (1), (2) and the choice of t, the subsets

X \B(X1, r) and X \B(X2, r) are large. Hence, X1 and X2 are not r-prethick.

Remark 1. A metric space (X, d) is called coarsely geodesic if there are ε > 0 and a function
f : [0,∞) → N such that any points x, y ∈ X can be linked by a sequence of points x =
x0, . . . , xn = y of length n ≤ f(d(x, y)) such that d(xi, xi+1) ≤ ε for all i < n.

Each connected graph with the set of vertices V can be considered as a coarsely geodesic
metric space (V, d), where d is the path metric on V . By [4, 5.1.1], each coarsely geodesic
metric space is coarsely equivalent to some connected graph.

It is easy to see that a coarsely geodesic metric space (X, d) has no asymptotically
isolated balls, but in the proof of (ii) the corresponding subsets X1, X2 can be chosen more
constructively. We fix x0 ∈ X, take an arbitrary s > r + t, t is chosen from the definition of
a geodesic space, and put

X1 =
⋃
s∈ω

(B(x0, 2s+ 1) \B(x0, 2s)), X2 = X \X1.

Remark 2. We can generalize Theorem for balleans instead of metric spaces. Recall [4] that
a ball structure B is a triple (X,P,B), where X,P are non-empty sets and, for every x ∈ X
and α ∈ P , B(x, α) is a subset of X which is called a ball of radius α around x. The set X
is called the support of B, P is called the set of radii.

Given any x ∈ X, A ⊆ X, α ∈ P , we put

B∗(x, α) = {y ∈ X : x ∈ B(y, α)}, B(A,α) =
⋃
a∈A

B(a, α).

A ball structure B is called a ballean if
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• ∀α, β ∈ P ∃α′, β′ ∈ P ∀x ∈ X
(
B(x, α) ⊆ B∗(x, α′) and B∗(x, β) ⊆ B(x, β′)

)
;

• ∀α, β ∈ P ∃ γ ∈ P ∀x ∈ X
(
B(B(x, α), β) ⊆ B(x, γ)

)
.

A ballean B is connected (bounded) if for any x, y ∈ X there is α ∈ P such that y ∈ B(x, α)
(X = B(x, α) for some x ∈ X, α ∈ P ).

We use a natural preordering α on P defined by α ≺ β if B(x, α) ⊆ B(x, β) for every
x ∈ X.

Each metric space (X, d) defines the ballean (X,R+, Bα). Clearly, all the definitions from
this note can be literally rewritten for balleans instead of metric spaces. Moreover, the same
can be done with the proof of Theorem 1 for all connected unbounded balleans.
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